
Understanding the Scaling Behavior of the
GFDL FMS High-Resolution Atmosphere

Model on the Argonne BG/Q Platform

IBM BG/Q: A Platform for Performance Discovery

Page 1

Table of Contents

Understanding the Scaling Behavior of the GFDL FMS High-Resolution Atmosphere Model on the
Argonne BG/Q Platform...1
IBM BG/Q: A Platform for Performance Discovery..1
1 Executive Summary...3
2 Introduction...4

2.1 Background..4
2.2 Project History...6

3 Broad Goals...6
3.1 Background..6
3.2 Methodology..9

4 Findings...9
4.1 Scaling Results...9
4.2 Initial Analysis...10
4.3 Detailed Results...12

4.3.1 The New Test Configuration..12
4.3.2 Understanding Performance Through Globally Summed Hardware Counts...................14
4.3.3 OpenMP Overheads...17
4.3.4 Performance Drivers..18
4.3.5 Conclusion...21

4.4 Machine Learning..23
5 Summary..24
6 Acknowledgements...24
Appendix A..25
Appendix B...27
Appendix C...30
Appendix D..33

Page 2

1 Executive Summary
The work of this project applies the IBM BG/Q MPI and thread aware hardware performance tools
MPITRACE, HPM and HPMPROF to analyze the loss of scaling performance for the GFDL 3.5km
resolution cubed-sphere atmosphere model. Initially it seemed quite reasonable to ascribe scaling
loss to communication issues and perhaps load imbalance. But detailed analysis of the data clearly
demonstrates that calculations performed in the MPI subdomain halo regions is the primary source
for scaling loss. Put another way, more MPI ranks means smaller work regions but more halo
points. This produces the classic perimeter to area problem. A secondary factor turns out to be ever
increasing OpenMP overheads associated with parallel regions containing very little work.

In separate but related work, we have applied Machine Learning techniques with hardware counter
data as input in an attempt to predict performance. Within the scope of project resources and time,
some successful results were achieved using non-linear models within a particular MPI layout. But
this nascent work misses the role of expanding instruction counts due to the subdomain halos. Left
for future work is the development of techniques that can probe across layouts to arrive at the
central results concerning increasing instruction count and the loss of scaling performance.

Page 3

2 Introduction

2.1 Background

Climate modeling, in particular the tantalizing possibility of making projections of future climate
that have predictive skill on timescales of many years, is a principal science driver for exascale
computing. Success with this effort will stretch the boundaries of computing along multiple axes:

• Resolution, where computing costs scale with the 3rd and 4th powers of problem size for

dynamics and physics, respectively and the data archiving costs as 3rd power

• Complexity, as new subsystems of climate processes enter the simulation realm as

feed-backs

• Capacity, as we build ensembles of runs to sample uncertainty, both in our knowledge and

representation, and inherent in the chaotic system

The predictive understanding of climate change, and the detection and attribution of climate change
to anthropogenic and natural components are among the leading human issues of our time. While
the global-mean response of climate to anthropogenic forcing seems now to be confirmed with a
great deal of confidence, the cutting edge of research and policy questions is now moving to the
issue of understanding and predicting climate variability and change on regional scales, with lead
times from weeks to decades. Such scales are the ones of most direct relevance to society and
decision-makers.

Model resolutions in the Fifth Intergovernmental Panel on Climate Change Assessment Report
(2013) are mostly in the 50-100km range for both ocean and atmosphere. A central concern for the
next generation of models is to understand natural and forced variability as we make the next leap
in resolution. This leap is particularly interesting as fundamental new physics appears in models of
both atmosphere and ocean at 25km resolution and higher. We begin to see the direct influence of
both ocean eddies and organized atmospheric storm systems (tropical cyclones and mid-latitude
fronts).

A key result that may be obtained from the next generation of model resolution is an answer to the
"decadal predictability" conundrum, which is principally driven by the ocean state: are there modes
of variability of the coupled ocean-atmosphere system that are predictable on timescales of a decade
or more; and to what extent is this dependent on ocean resolution? Conversely, we also seek to
answer the question of whether the statistics of fine-scale phenomena such as the inter-annual
variability in hurricane frequency and intensity is predictable on the basis of free-running Earth
System Models.

The resolution, complexity, and capacity achievable on exascale platforms holds the promise to
allow us to characterize the "tail" for the probability distributions where a lot of climate risk and
difficult policy decisions reside.

The climate modeling community has been actively involved in providing feedback to the exascale
design process. The exact contours of that system are yet unknown. But we do know that in one
way or form, we are entering a realm of multi-billion-way concurrency in computation. This will
pose extraordinarily daunting challenges.

We believe that the path forward toward exascale must address the extreme concurrency required.

Page 4

In brief, we believe that one way to achieve this consists of:

• Climate system components that exhibit 10^5 concurrency based on the target resolutions

• Assembling the components into coupled systems where O(10) components are concurrently

scheduled

• Running in ensembles of appropriate size for sampling outcomes which introduces

O(10-100) concurrency

• Leveraging task-parallel work-flows that support another O(10) elements in the entire

work-flow (simulation, archival, post-processing and analysis) to be concurrently scheduled.

We underline the fact that in the path outlined above, the exploitation of exascale systems will
require a multi-pronged approach, in which scalable methods within components, scalable coupled
numerics between components, and scalable work-flows across the complete climate modeling
process managing models and data across massive ensembles of coordinated simulations, will all
play a role.

Central to the success of the current climate research within NOAA has been GFDL’s Flexible
Modeling System (FMS). First developed in the Cray T3 era to enable GFDL's scientific transition
from vector to scalable, parallel platforms, the past decade plus has been significant development
within individual model components. For the atmosphere, these developments include the Cubed
Sphere dynamical core and advances in atmospheric chemistry. For the ocean side, there have been
multiple advances in bio-geochemistry and vertical mixing. Additionally, the land model has added
time dependent vegetation cycles. Over this period, the the fundamental extensibility of the
infrastructure has supported some of the most significant achievements in climate research over the
past decade. Indeed from its beginnings on the parallel platforms of this century, the FMS modeling
infrastructure and climate models supported by them have been extended to the petascale platforms
of today with bright prospects for equally impressive achievements through what remains of this
era.

For all its impressive achievements in support of climate science, it is clear that the existing
modeling frameworks cannot simply be extended to the coming exascale platforms. Aside from the
challenges posed by the highly threaded nature of coming compute node architectures, this
infrastructure was developed in an era where I/O and memory footprint were essentially free and
reliability of individual computational elements was a given. Even in this petascale era, we are
finding difficulties with these assumptions. At exascale, we know with virtual certainty that
memory and I/O use will need to be carefully controlled.

For almost as long as FMS has been a platform for climate science, it has served as a basis for
studying current and future performance. After some initial experimental work on the BG/L located
at Princeton University, FMS was running on the Argonne BG/P within 6 months of its arrival.
From that point forward, work on the Argonne Blue Gene series of platforms has been a key driver
for improvements in memory footprint control and scalability for FMS. These improvements are
cornerstone elements supporting the IPCC AR5 production recently completed on Gaea at NCRC
utilizing models running on O(10K) or more cores in an MPI / OpenMP framework.

The work described in this report represents the performance analysis facet of an Early Science
Award to run the GFDL 3.5km resolution, non-hydrostatic model on BG/Q. The performance work
is part of an initiative codified in 2011 to develop testbeds for the technologies pointing the way to

Page 5

exascale capable platforms. Current efforts include increasing model component concurrency1,
studies of concurrent components on Intel Xeon Phi and nVidia GPUs as well as extremes of
scaling on the BG/Q platform.

2.2 Project History
The work described in this report is a performance analysis off-shoot of an Early Science Project on
the Argonne BG/P system. Titled “Climate-weather modeling studies using a prototype global
cloud-system resolving model”, the proposal targeted creation of a global atmospheric model
capable of directly simulating deep convection and severe storms on a planetary scale. The goal of
the project was to develop a software platform capable of predictive understanding of individual
tropical storms, as well as the response of global and regional storm statistics to climate change.

With the resources provided the GFDL_esp on the Argonne BG/P and later BG/Q systems,
excellent progress has been made towards the scientific goals. Nevertheless the software
infrastructure supporting this work encountered significant performance challenges in attempting to
scale to a million or more hardware threads. This project is an attempt to identify root causes and
possible courses of action to improve model scaling behavior.

3 Broad Goals
Simply stated, the goal of this research is to understand and quantify the elements leading to the
scaling behavior of the GFDL 3.5km Resolution Cubed-Sphere Atmosphere model on the Argonne
IBM BG/Q (Mira). The Statement of Work reads as follows:

... determine the root cause(s) and possible solutions for the scaling behavior of the

GFDL FMS 3.5km Cubed Sphere Atmosphere running on the Argonne BG/Q

platform.

3.1 Background

Data gathered prior to the start of the work reported here demonstrate that the strong scaling
performance of multiple GFDL 3.5km cubed-sphere atmosphere models deteriorates significantly
between 32K and 64K MPI-Ranks. A plot of scaling for the Held-Suarez model is provided below
courtesy of Chris Kerr at GFDL (Figure 3.1)

1 In this context, concurrency means the capability to run a model component on its own set of hardware. For
example, FMS has long had the capability to run the atmosphere and land on one set of processing cores and the
ocean and ice on a different set. GFDL is currently in the process of making the solar radiation a concurrent
component as well.

Page 6

The data further show that the communication time is completely dominated by calls to MPI_Wait.
Plotting the time spent in MPI against a projection onto the underlying cubed-sphere grid produces
fascinating but difficult to interpret patterns. These patterns suggest that sub-classes of processes
may behave in correlated and perhaps self-reinforcing patterns any of which may contribute to the
scaling limitations. A graphic with the wait time provided by Chris and Bob Walkup at IBM is
presented below (Figure 3.2):

Page 7

Figure 3.1

Assessment Going Into the Project:

• The MPI communication diagram (largely dominated by MPI_Wait) is actually an aggregate
over the entire program run. We need to gain deeper understanding of the communication
classes and how they contribute to the aggregate.

• Both communication and computations load imbalance have been examined. While the
imbalance in floating-point instructions was determined to be about 5% across the ranks, the
wait time varies by ~50%. There are clearly additional factors. What are the root cause(s)?

◦ Examine the possible roles of system hardware and software in the communication
features.

• Once the underlying mechanisms have been identified, how might the strong scaling
performance of the code be improved?

Page 8

Figure 3.2

3.2 Methodology

The Argonne BG/Q platform supplies a number of tools for the acquisition of data related to
application performance. The project selected

• mpitrace: A library for collecting and providing ascii file output of application message
passing characteristics.

• mpihpm_smp: An OpenMP compatible library for collecting and providing ascii file output
of a selected set of hardware counter information along with selected metrics derived from
the raw counter data.

• hpmprof: An OpenMP compatible library for collecting and providing ascii file output of a
user selectable hardware counter at a user selectable frequency profiled by subroutine. The
library provides resolution down to subroutine source line number.

In addition, the project employed a number of additional analysis tools

• A database with web front end developed previously by Samara Technology Group to enable
text and graphic comparison of hardware counter data across run configurations for scaling
analysis.

• Ad-hoc, spreadsheet based analysis of cross configuration performance features.

In an effort to develop novel approaches for the analysis of large, complex application performance
related datasets, Samara also teamed with Dr. Haimonti Dutta of the Columbia University Center
for Computational Learning in an effort to apply Machine Learning techniques. Results from all of
these approaches are documented in this report.

4 Findings

4.1 Scaling Results
Among the first tasks was to repeat the scaling results of Kerr et al. To this end, we measured the
wallclock performance of the 3.5km Held-Suarez main loop on 1, 2, 4, 8 and 16 racks of Mira. This
excludes the expensive initialization and the small but performance irrelevant restart write. Figure
4.1 depicts Models Days per Computation Wallclock Day on configurations from 1 to 16 racks as
measured for this project:

Page 9

There are two particularly interesting features apparent in the data. The first is the principle topic of
this work: The loss of scaling performance at extreme scale. But a second feature found with some
layout optimization work (i.e. finding optimal MxN subdomain decompositions) is the slightly
superlinear speedup going from 2 to 4 racks (131K to 262K threads). Follow on analysis made the
source of both of these features very clear.

4.2 Initial Analysis
The principle hypothesis concerning the scaling behavior posited issues associated with
communication performance. There was a lot of reason to believe this view. Just on general
principles, this is the first time the communication infrastructure supporting the model2 has been run
at such scales. As communication performance is so intimately linked with scaling behavior, it is
quite reasonable to wonder whether the FMS infrastructure was encountering some previously
unknown internal limitation. Certainly earlier work on the Argonne BG/L and P had demonstrated
previously unknown application scaling limitations.

At the outset, it was known that the FMS communication library implements a non-blocking
communication model, posting non-blocking receives before buffering data and then executing the
non-blocking sends. But a key limitation of FMS is that it supports only a single communication
in-flight between any MPI two ranks. If a second communication becomes necessary between two

2 The FMS MPP library that contains all information concerning the rank to rank communication topology as well as
wrapping the calls to MPI.

Page 10

Figure 4.1

MPI ranks, the implementation blocks until the first send/recv pair is satisfied.

It was known that the edges and corners receive special treatment that requires communication in
addition to that on the interior of the cube face. Was it possible that these large scales with a
processor of substantially different architecture than Intel x86 and a model with over 150K MPI
ranks was revealing some sort of complex chaining behavior? As noted in the background material
of Section 2.1, the communication patterns as depicted in Figure 3.2 suggest sub-classes of
processes that may behave in correlated and perhaps self-reinforcing patterns any of which may
contribute to the scaling limitations.

Such basic observations of model scaling and subsequent questions are generally the motivations
for performance analysis research. But as becomes clear throughout the rest of this report, initial
observations and prior knowledge notwithstanding, one must keep an open mind. As the data and
analysis of this report clearly demonstrate, the causes of the scaling deterioration for the model are

in fact rooted in phenomena associated with the compute portions of the application; not

communication. Further, approaches that rely on halo or ghost cell regions3 (as do virtually all grid
based approaches in a distributed, parallel environment) have characteristics that can induce

anti-scaling behavior (i.e. performance components that increase with increasing MPI rank count).

First we examine the base timing data to understand communication behavior. One of the most
striking features is that virtually all of the time attributed to MPI is MPI_Wait and MPI_Allreduce.
The following Table 4.1 summarizes the Main Loop time and the Communication time associated
with the Main Loop:

Table 4.1

It is clear from Table 4.1 that the (non-blocking) send and receive operations take only a small
portion of the communication time.

The MPI_Wait time is indicative of load imbalance across the MPI ranks. Further while not
represented in the table, 88.5% of the Allreduce operations are on a single, double-precision value
while the remaining 11.5% are a vector of 32 double precision values. Since the BG/Q
communication network is very high bandwidth and low latency, the Allreduce times are also
attributable to load imbalance.

But it is not the load imbalance that leads to loss of scaling performance and there is a very simple
way to see that the real problem lies with loss of scaling in the computation. Subtracting the Main

3 For more detail on ghost cells, see for example http://parlab.eecs.berkeley.edu/wiki/_media/patterns/ghostcell.pdf.

Page 11

Comm Time

Main Loop Comm Breakdown

8 threads Sim days / day sec sec sec

1 Rack 8.8 3254.7 431.0 8.4 / 2.1 ISend/IRecv

143.0 AllReduce

277.5 Wait

4 Racks 36.8 782.9 65.8 7.2 / 1.8 ISend/IRecv

7.7 AllReduce

49.0 Wait

16 Racks 86.8 331.7 58.7 5.4 / 1.2 ISend/IRecv

7.2 AllReduce

45.0 Wait

Loop communication time from the Main Loop itself, we arrive at 2823.7s for a single rack. Simply
dividing 2823.7s by 16, we arrive at the perfect scaling value of 176.5s. Calculating the Main Loop
compute time as measured for 16 racks produces 273s. Thus, the measured Main Loop time at the
scaling extreme is almost 1.55x that of perfect scaling. One or more phenomena are clearly having a
profound negative impact on computational component.

At this point in the study, we were asked to update the source code base and specific test problem to
bring it in line with the code base being used in a broader set of studies that include Xeon Phi, Xeon
Sandy Bridge and at some point, perhaps nVidia GPGPUs. But before leaving the datasets
associated with the original code base, a table of some hardware counters as measured by the
mpihpm_smp library is provided below:

Table 4.2

Among the most striking features of the data is the increase in FP operations (over 20%) as one
scales out. We will revisit this phenomenon in some detail later in the report. Another interesting
feature is that even with the increase in FP operations, the number of non-FP operations (based on
the %FXU) is also increasing. Finally, the scaling of the IPC/core is also quite interesting. We can
guess that decreased memory traffic is a significant factor increasing the IPC/core going from 1 to 4
racks. What then reduces the IPC/core when scaling from 4 to 16 racks?

4.3 Detailed Results

4.3.1 The New Test Configuration
As mentioned in Section 4.2, we were asked to update the source code base and specific test
problem to bring it in line with the code base being used in a broader set of studies. Aside from any
source code changes, the test problem was moved from the non-hydrostatic Held-Suarez case to the
hydrostatic Held-Suarez case. It is not surprising that the non-hydrostatic case is computationally
significantly more expensive. Nevertheless, the performance features of the hydrostatic case are
similar enough to remain generally congruent to the original problem.

The results of Section 4.2 also strongly suggest that MPI is not the sole nor even major source of
scaling inefficiency. We conclude from this that we are in search of efficiency losses within the
computational performance. Thus, it should be sufficient to apply weak-scaling principles and study
a test case with a smaller global domain while maintaining the per-rank working set size by
appropriate choice of core count and layout.

Referring to the time spent in MPI as depicted by Figure 3.2, some early work also clearly
demonstrated that contours of the MPI cost graph were closely associated with the number of

Page 12

C2560 NonHydrostatic HS

Sim-day / FP Ops / DDR

racks Wall-Day speedup Sim-hr %FXU IPC/core Bytes/Cyc

1 8.83 1.0 4.63E+15 60.9 0.77 13.2

4 36.78 4.2 4.92E+15 63.1 0.85 9.5

16 86.84 9.8 5.63E+15 66.7 0.75 6.0

subdomain points assigned to the MPI rank. It should be noted that for the original problem, one of
the goals for decompositions used in the analysis was to fill as many of the nodes as possible for a
given rack count. Given the 6 faces to the cubed-sphere, the C2560 grid, the empirically determined
8 OpenMP threads per rank and the constraint to maximize residency at a given rack count leads to
some interesting decompositions. Trial and error found that configurations closest to square gave
the best results. Consequently, the MPI decompositions for the C2560 results reported here were
(X-ranks x Y-ranks) 39x35, 78x70 and 156x140 for 1, 4 and 16 racks, respectively4. Since 2560 is
not an integral multiple in either direction of any of these rank counts, there is substantial variation
in subdomain point count. This makes the minimal impact of MPI load imbalance on scaling as
analyzed in Section 4.2 all the more interesting.

In searching for a reduced size global grid, we note that differing subdomain point counts is an
obvious source of MPI load imbalance. Again referring to the results of Section 4.2, we chose to
study a global grid size allowing symmetry between the X and Y decompositions. A factor
motivating the choice for the study grid was noting that in some average sense, the subdomain sizes
for the C2560 performance tests were approximately 72x72, 36x36 and 18x18 for 1, 4 and 16 racks,
respectively. Combining this with the desire to minimize the resources required to run the many
data gathering experiments led to the choice of a 288x288 global grid. While not a unique solution,
it certainly satisfies the desired constraints. Eight threads per rank (per the original problem) and
subdomain sizes of 72x72, 36x36 and 18x18 lead to node counts of 12, 48 and 192, respectively5.

The Figure 4.2 below depicts the scaling performance of the 288x288 demonstrating that from a
scaling perspective, it is a reasonable surrogate:

4 Corresponding to 8190, 32760 and 13140 MPI-ranks.
5 Corresponding to 96, 384 and 1536 MPI-ranks.

Page 13

In summary, after the initial data gathering outlined in Section 4.2, we were asked to update the
code base and change test case for consistency with ongoing performance analysis across multiple,
highly threaded architectures. Supported by the results of Section 4.2, we used the principles of
weak-scaling to choose a substantially smaller global grid. We maintained a notion of the average
subdomain point count. The new test case is hydrostatic while the original case is non-hydrostatic.
Still the general shape of the performance features remains congruent to the original problem. It
should be noted that we loose the superlinear speedup originally present going from 1 rack to 4
racks. As the effect was small and goal is to understand performance at full scale (i.e. equivalent to
16 racks), the loss is inconsequential to the analysis. The details described below bear this out.

4.3.2 Understanding Performance Through Globally Summed Hardware Counts
This report will not cover the hardware counter libraries in any detail. There are excellent
descriptions of the tool sets elsewhere6. This report will discuss how the data from the hardware
counters has been applied.

While the libraries are capable of outputting per MPI rank hardware counter information (and
indeed even some data on a per thread basis), the shear volume and complexity of the data makes it
essential to try to first determine what drives performance from a global perspective. Towards this
end, we (and others) have applied the following techniques successfully.

6 See for example IBM public documentation “IBM System Blue Gene Solution Blue Gene/Q Application
Development” as well as /home/walkup/mpi_trace/bgq/MPI_Wrappers_for_BGQ.pdf on Mira and Vesta.

Page 14

Figure 4.2

For a simple case, consider a parallel application with a Single Program / Multiple Data, MPI
programming paradigm and further, consider a profile of the cycles spent in the various subroutines
summed across all ranks for a given run.

Under perfect scaling in this highly simplified example, the global sum of the total program cycle
counts across all the ranks is a constant. Further, this is true at the procedure level as well.

But we do not live in such a simple world. First and perhaps most important, the working set size
changes as one scales out. Thus the application running on N-MPI ranks is likely to have a very
different interaction with the memory hierarchy than when running on 4N or 16N ranks. Nor is the
subroutine profile likely to remain constant7.

The graph in Figure 4.3 depicts the cycle count on a per subroutine basis for the MPI layouts 4x4,
8x8 and 16x16 as summed across all ranks8 for the 288x288 grid. As one can readily assess, things
are not constant as one scales out. Further, one can readily pick out that OpenMP thread load
imbalance costs increase as one scales out. But is the apparent thread load imbalance sufficient to
explain the loss in scaling? It should be noted that the version of HPMPROF that provides the data
for this graph is limited to an interrupt for Thread-0. With a total of 8 OpenMP threads for each

7 This is why it is essential to use test cases that mimic if not replicate production problem working set sizes. One can
easily solve the wrong performance problem with test cases that are too small or over-simplified.

8 For this paper, the terms cycle and cycle count will refer to the globally summed value unless otherwise explicitly
specified. The terms wallclock and runtime all refer to the measured unit of time to solution.

Page 15

Figure 4.3

rank, we are getting only a limited view of the thread performance world.

The utility of global counts for all of the hardware counters is as useful as cycles. These other
hardware counters such as completed instructions through the main execution unit (XU
instructions), the number of completed FP instructions (executed through the auxiliary instruction
unit – the AXU – on the BG/Q processor), cache misses, etc all provide information on what's
causing the observed performance. Aggregating the values across ranks produces a top-down
perspective9.

Graphs are but one way to gain insight into the global data. The table below summarizes the
hardware counter values across layouts for the 288x288 grid with working set sizes equivalent to 1,
4 and 16 racks of the original c2560 grid (96, 384 and 1536 MPI ranks for the 288x288,
respectively). Note not only the increase in AXU instructions10 with increasing core count, but the
increase in XU instructions as well.

Table 4.3

It is also interesting to note that XU instructions outnumber AXU instructions from 1.6x to 2.6x
across the scaling range. Since the BG/Q core is capable of executing an AXU as well as an XU

9 See “Beyond the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q”, McCraw et al for more detail
on the BG/Q processor as well as the hardware counter infrastructure.

10 The Auxiliary Execution Unit (AXU) issues the FP instructions (and only FP instructions). The FP count produced
by the HPM and HPMPROF libraries is an attempt to apply weights to the actual FP instruction. For example,
SIMD instructions producing more results per cycle are weighted accordingly.

Page 16

288x288: All

Pts per face 72x72 36x36 18x18

MPI face layout 4x4 8x8 16x16

Ranks 96 384 1536 384 / 96 1536 / 384 1536 / 96

Total Cycles 4.55E+14 4.65E+14 7.04E+14 1.02 1.51 1.55

Load Miss 1.56E+13 1.55E+13 1.85E+13 1.00 1.19 1.18

Cacheable Loads 2.30E+14 2.60E+14 3.56E+14 1.13 1.37 1.55

L1p Miss 3.92E+12 3.97E+12 6.99E+12 1.01 1.76 1.78

XU Inst 4.93E+14 5.93E+14 9.35E+14 1.20 1.58 1.90

AXU Inst 3.05E+14 3.25E+14 3.66E+14 1.07 1.13 1.20

XU / AXU 1.62 1.83 2.55 1.13 1.40 1.58

FP 3.90E+14 4.15E+14 4.66E+14 1.06 1.12 1.19

L2 Hit 5.17E+14 5.74E+14 7.98E+14 1.11 1.39 1.54

L2 Miss 2.40E+13 2.06E+13 1.73E+13 0.86 0.84 0.72

FPU % 38.19 35.36 28.15

FXU % 61.81 64.64 71.85

Bytes/cyc 11.587 8.785 4.738

IPC 0.88 0.99 0.92

Tot GF 131.65 547.65 1626.00

% Loads that hit in

L1D cache 93.21 94.02 94.81

L1p Buffer 5.08 4.45 3.22

L2 Cache 0.40 0.53 1.36

DDR 1.30 0.99 0.61

instruction with each cycle, it seems clear that the XU instructions will dominate performance11.

As it turns out, some relatively simple call chains execute most of the total runtime cycles. These
call chains are the “D-grid shallow water” (D_SW), the “C-grid shallow water” (C_SW) and the
“Geopotential” (GEOPK). These chains are all OpenMP enabled, contain no MPI communication
and expend 61%, 61% and 49% of the cycles for the 4x4, 8x8 and 16x16 decomposition,
respectively. Time spent in MPI from other parts of the code (again, almost entirely in wait
operations) is 4.9%, 2.0% and 4.3% again across the scaling range 4x4, 8x8 and 16x16.

OpenMP overhead and load imbalance are somewhat more difficult to ascertain. Two approaches
were applied to the D_SW, C_SW and GEOPK call chains. For the first approach, XU, AXU
instruction counts were measured in each call chain using HPM. Recall that HPM aggregates per
core counter values across all threads. In separate experiments, HPMPROF was used to collect the
data within the main loop for a specific counter. Note that the version of HPMPROF used here
records the value for Thread-0 only.

The HPM global count for a particular counter was compared against a Thread-0 global count
derived from HPMPROF data.

The key to the analysis is that the HPM data contains all routines in a particular call stack while the
approach using HPMPROF simply selects the FMS source routines in the call stack. Thus, HPM
data contains all OpenMP overheads while HPMPROF does not. To the extent that the Thread-0 XU
and AXU data exemplifies the true average across threads, the HPMPROF counts will be 1/8 the
HPM counts. The different approaches yield strikingly congruent results for the D_SW and C_SW
call chains while the comparison yields discordant results for GEOPK. Luckily GEOPK comprises
only about 7% of total cycles across the scaling range.

Later in the project, a hardware profiling library that sums over the threads (referred to from here
forward as HPMPROF_smp) was provided by IBM12. While there are several caveats when
attempting to perform interrupt driven profiling in a multi-threaded environment, HPMPROF_smp
worked extremely well for the calipered experiments being performed. The results from this series
of data was consistent with the notion that the D_SW and C_SW call chains contain very low
amounts of OpenMP overheads while GEOPK has a rather high percentage of cycles associated
with OpenMP. For more detail, see Appendix B.

4.3.3 OpenMP Overheads
While Section 4.3.2 notes that OpenMP overheads are low for the D_SW and C_SW call chains,
further work with HPMPROF profiling reveals that cycles spent in OpenMP related functions
escalate elsewhere in the application. The following table summarizes the results from HPMPROF
(records thread 0 only) for cycles and XU instructions across all MPI ranks. The counts have been
binned into categories. The categories FMS and MPP are application code. Here we've specifically
broken out the cycles spent in the FMS MPI library wrapper. Virtually all of the MPP cycles are
devoted to data movement. Further, the counts attributed to FMS also include runtime math
functions such as log and exp. The message passing portion of the counts have been further
decomposed into symbols associated with the underlying MPICH implementation and the BG/Q
Parallel Active Messaging Interface (PAMI)13. The final categories were cycles associated with

11 XU instructions almost undoubtedly dominate performance as they contain the load and store operations as well as
address calculation.

12 As with many aspects of this project, we are deeply indebted to Bob Walkup. IBM TJ Watson Research Center for
valuable discussions and ad hoc tool tinkering.

13 Note that the PAMI counts also include the Message Unit Programming Interface which were small in number in

Page 17

OpenMP, the IBM XL compiler components not associated with the OpenMP implementation and
miscellaneous.

Table 4.4

The OpenMP profile was analyzed in some detail:

Table 4.5

We can see that OpenMP emerges as a substantial component with unpleasant anti-scaling
characteristics and we know that these cycles are not associated with the primary computation call
chains. Unfortunately at this point, we have no particularly effective techniques for tracing where
these OpenMP cycles are coming from other than to play hide and seek by calipering a particular
code section and hoping to find hits. Interesting in the OpenMP profile is the emergence of the
xlsmpGetDefaultSLock. This routine receives no counts in any of the D_SW, C_SW and GEOPK
call chains. In particular, its absence in GEOPK likely means that whatever effects leading to the
increased OpenMP overheads for GEOPK do not explain the more general increase in OpenMP
cycles.

4.3.4 Performance Drivers
FP Updates to Halo Values

Referencing Section 4.2, the increase in AXU instruction count as MPI rank count increases is one
of the more interesting features of the hardware counter data. While an increase in AXU count
seems counter-intuitive, a little thought provides an obvious mechanism. One of the MPI scaling
phenomena is that the ratio of halo point count to points interior to the subdomain increases. Put
another way, only the calculations and updates on values in the subdomain interior (the so called
compute domain) move the simulation forward. Calculations leading to updates in the halo region
are redundant. While redundant calculations are often preferable to communication, it is a fact that
they do not in and of themselves produce forward progress for the simulation.

The OpenMP implementation in the FMS cubed-sphere dynamical core has the following structure:

any event.

Page 18

omp cycles 4x4 8x8 16x16

SpinWaitTaskSwitchBGQ 58.40% 34.44% 22.51%

xlsmpGetDefaultSLock 16.41% 36.52% 50.70%

pthread_cond_signal 5.80% 5.53% 5.58%

sched_yield 5.21% 4.08% 2.40%

xlsmpParallelDoSetup_TPO 2.66% 3.87% 3.71%

CYCLES Count Ratios

ALL 430062011 435254051 653187860 8x8 / 16x16 /

4x4 8x8 16x16 4x4 8x8 16x16 4x4 8x8

fms 350846079 351744324 419909026 fms 81.58% 80.81% 64.29% 1.00 1.19

mpp 9755165 20533757 52617483 mpp 2.27% 4.72% 8.06% 2.10 2.56

omp 10147590 22793135 80750098 omp 2.36% 5.24% 12.36% 2.25 3.54

mpi 6499407 7381086 22731636 mpi 1.51% 1.70% 3.48% 1.14 3.08

pami 24289231 18103732 46002166 pami 5.65% 4.16% 7.04% 0.75 2.54

xl 27870178 12348854 22877831 xl 6.48% 2.84% 3.50% 0.44 1.85

misc 654361 2349163 8299620 misc 0.15% 0.54% 1.27% 3.59 3.53

As depicted by the Figure 4.4 shaded sections, many of the calculations are across a “slab” (i.e. the
X and Y directions) with OpenMP along the Z axis (NZ=32 for this case). The numeric operators
used by the cubed sphere require up to 3 points in each of these spacial directions and thus each
subdomain requires a halo of size 3. A simple calculation shows how quickly the halo points
dominate any derived quantities that need values in the halo region. Consider the reduced grid with
288x288 points per face. Per the discussion of Section 4.3.1, 4x4, 8x8 and 16x16 MPI-ranks per
face mimics the C2560 on 1, 4 and 16 racks, respectively. In turn this produces subdomain sizes of
72x72, 36x36 and 18x18. Including a 3-point halo, the so-called data (sub)domain for each rank is
78x78, 42x42 and 24x24, respectively. Thus for a decomposition of 4x4, the halo region is about
15% of any computation that updates the entire data domain. On the other hand, the halo region is
almost 44% of the data domain at 16x16 ranks per face. More importantly, the total number of grid
points to compute (i.e. the point count summed across all data domains) escalates from 97.3K pts
per face at 4x4 to 147.5K pts per face for any computation that includes calculating values for the
entire halo region. The increase in the total number points for any computation updating the entire
data domain across the range representing 1 to 16 racks is over 50%!

Luckily relatively few computations call for operations that update the halo region and then,
generally not the entire region. Nevertheless, the phenomenon is clearly discernible in the hardware
counter data. The following is a sample taken with HPMPROF using a kernel based on a prominent
subroutine in the run time profile (fxppm). For this section of code, the number of levels (NK=32)
is the OpenMP axis and the loop is farther up in the call chain. The test is setup to run the call to
fxppm 16 times more iterations for a subdomain size of 18x18 than 72x72. This mimics the
(idealized) conservation of FP operation count across the global domain.

Page 19

Figure 4.4

do j=js,je
 do i=is-2,ie+2
 xt = 0.25*(q(i+1,j) - q(i-1,j))
 dm1(i) = sign(min(abs(xt), max(q(i-1,j), q(i,j), q(i+1,j)) - q(i,j), &
 q(i,j) - min(q(i-1,j), q(i,j), q(i+1,j))), xt)
 enddo
.
.
.

For this case, js and je are simply the J limits of the compute subdomain (i.e. no Y halo).
HPMPROF (setup to profile FP operations) hits some component of this loop 13088 and 15150
times for the 4x4 and 16x16 decompositions, respectively. Simple division shows us there are
approximately 1.16 times more FP operations for 16x16 than 4x414. On the other hand, the inner
loop updates 2 of the halo points on each side in the X direction.

(22*18)*(16^2) / (76*72)*(4^2) = 1.16

The agreement with theory is startling and may seem like good luck as much as anything else since
the data is acquired by statistical sampling. Still this loop represents one of the most expensive
elements of the subroutine and so should build the best statistics. Counts from other, less expensive
loops reflect the tendency described here, but not the detailed values of theory.

Unlike HPMPROF which profiles code based on a particular hardware counter overflow, the HPM
tool simply captures the values of particular counters between start and stop points. HPM applied to
the fxppm kernel verifies the bloat in FP operations as one scales out and this is consistent with the
halo spanning loop structures of fxppm.

Beyond Floating Point Operations

While FP operations (AXU instructions) are a measure of the computational work being done, it
must be remembered that a substantial set of operations must be performed in order to get the FP
operands into place for the computation. Thus given the nature of the RISC instruction set, it is not
surprising that non-FP operations (XU instructions on BG/Q) outnumber FP operations by a rather
large margin. Referring to the tables in Appendix A, we see that only for the computationally
densest part of the dynamical core (the D_SW call chain) is there relative parity between XU and
AXU instruction counts.

What are the drivers for the XU operations? Since the growth of XU instructions outpaces the
growth of AXU (FP) instructions, one might wonder whether the XU instructions are associated
with some breakdown in OpenMP efficiency, with the dycore computations in the call chain or with
something as yet unknown. The HPM and HPMPROF_smp tools allow us to answer this question
in some detail.

We can gain a top-down perspective from the XU instruction counts decomposed as with cycles in
Table 4.4

14 A similar experiment was performed with AXU instructions and produced similar results.

Page 20

Table 4.6

Among the first things to note is that the shape of the categorized XU counts is similar to the shape
of the cycle counts. It seems reasonable to assert that the major source of increase in XU and hence
cycle count is driven by the increased count of halo points as manifested in the fms and mpp
categories. There is also a substantial component that emerges from OpenMP (specifically
xlsmpGetDefaultSLock). Previous analysis has demonstrated that these instructions are not
associated with the main computational components D_SW, C_SW and GEOPK.

As concerns the main computational components, we can demonstrate that the HPM and
HPMPROF_smp tools are giving consistent results. Subtracting the load operations from the XU
count, one can begin to deconstruct the types of operations being performed. Using HPM calipered
around the D_SW, C_SW and GEOPK regions, we obtained the counter data in Appendix C which
provides a breakdown of the XU instructions in terms of loads, stores, branches and miscellaneous
“other” (integer arithmetic mostly likely address calculation, bit manipulations, register moves, etc).
As a check, we also ran HPMPROF_smp over the D_SW region for branches and stores and
projected a global count for 1 simulation day. A comparison of values derived from the two
approaches is provided in the table below.

The results are within about 3% of each other.

4.3.5 Conclusion
We have used various hardware counters summed across all MPI ranks as probe into the resource
utilization characteristics that drive the scaling behavior of the GFDL FMS 3.5km High-Resolution
Atmosphere model on the Argonne BG/Q platform. Early in the process we determined that MPI
performance per se plays no role in the scaling characteristics. Based on this result, we applied the
principle of weak scaling to study a much coarser resolution grid on layouts that preserve the per
rank working size.

The hardware counter data and analyses clearly demonstrate that calculations for derived variables
associated with the halo region are inherently non-scalable since the ratio of halo to compute
domain points grows ever larger with MPI rank count. Performance enhancement through cache
effect induced memory footprint reduction via scaling can offset instruction count growth as it does

Page 21

D_SW

HPMPROF_smp HPM

16x16 8x8 16x16 8x8

BR 4.44E+13 3.63E+13 4.58E+13 3.71E+13

ST 4.65E+13 3.88E+13 4.53E+13 3.82E+13

XU Count Ratios

ALL 70672412 73963029 119300459 8x8 / 16x16 /

4x4 8x8 16x16 4x4 8x8 16x16 4x4 8x8

fms 53518822 58295094 72234995 fms 75.73% 78.82% 60.55% 1.09 1.24

mpp 1310255 3754271 11990508 mpp 1.85% 5.08% 10.05% 2.87 3.19

omp 1075382 3467290 14656405 omp 1.52% 4.69% 12.29% 3.22 4.23

mpi 2128409 1214499 3278641 mpi 3.01% 1.64% 2.75% 0.57 2.70

pami 7448656 4632589 11403841 pami 10.54% 6.26% 9.56% 0.62 2.46

xl 5119204 2306978 4561084 xl 7.24% 3.12% 3.82% 0.45 1.98

misc 71684 292308 1174985 misc 0.10% 0.40% 0.98% 4.08 4.02

in the transition from the 4x4 decomposition to the 8x8 for the 288x288 grid (equivalent to the 1 to
4 rack transition for the original C2560 case). But such transitions are limited in number and effect
leaving the behavior seen from the 8x8 to the 16x16 decomposition much more likely. The “Halo
Effect” mechanism drives over 70% of the XU instructions and hence cycles at full scale.

The emergence of substantial cycles associated with OpenMP overheads plays a secondary role in
performance at scale. We have demonstrated that these OpenMP cycles are not associated with
D_SW and C_SW and that their link to GEOPK is completely insufficient to be the root cause of
the count expansion. On the other hand, the proportion of cycles associated with these three
components has diminished from 60% of total cycles for the 4x4 and 8x8 decompositions to 50%
for 16x16. This fall mirrors the rise of the OpenMP overhead cycles like from the remaining 50% of
FMS.

Perhaps the pivotal thing to understand is the distinction between processor performance verses
scaling performance. Instructions per cycle (IPC) is the key metric for processor performance and
the BG/Q processor core is capable of concurrently executing an AXU and an XU instruction per
cycle15. So far as concurrency of the AXU and XU is concerned, it turns out that even within the
most compute dense portion of the code (the parallel region around D_SW), the IPC is only 1.12 to
1.18. Over the entire code, the IPC ranges from about 0.9-1.0.

With respect to instructions executed on the computational domain (the portion that actually moves
the simulation forward), we note that regardless of number, the potentially expensive16 cache misses
get distributed over increasing numbers of MPI ranks and so their net effect on wallclock time
should diminish linearly17. And this is true of the per rank cost of all operations on the
computational domain and this fact is fundamental to the notion of scaling.

This leads to the assertion that the loss of performance can only come from increased instruction
count and reduced OpenMP efficiency. And indeed, the cycle count data in Table 4.4 contains the
smoking gun:

fms+mpp:
96: 3.6 x 10^8 cycles
1536: 4.7 x 10^8 cycles

omp:
96: 1.0 x 10^7 cycles
1536: 8.1 x 10^7 cycles

Thus the excess cycles due to the FMS application code (fms+mpp) is 1.1 x 10^8 while openMP
increases by 7.1 x 10^7. This makes FMS about 51% of the total cycle expansion of 2.2 x 10^8
while openMP is about 32%.

Finally, the load imbalance as manifested in the time attributed to MPI is a very complex
phenomenon. The transition to improved memory hierarchy utilization 4x4 → 8x8 seems to offset
the negative scaling effects of increased workload. But at a minimum, there is special treatment of
grid points on the corners and edges and there are likely other factors associated with increased

15 With certain restrictions on the nature of the instruction. For example, the AXU and XU must be from different h/w
threads.

16 Potentially expensive because quick switching from a stalled thread to one ready to run can provide very effective
latency hiding.

17 Of course the hardware counter data tell us that we're getting generally better cache behavior as we scale out.

Page 22

overall point count. Without another performance boost, the cycles associated with load imbalance
for 16x16 are headed towards 3X those for the 8x8 configuration (though still only about 17% of
the total). Nevertheless, it accounts for only a minor portion of the scaling loss.

4.4 Machine Learning
This section outlines18 the results of applying Machine Learning techniques (specifically linear and
non-linear regression modeling) to the problem of performance projection. The HPMPROF
hardware counter data acquired during the project was used as training input for the regression
model.

The goal of the exercise was to predict the total cycles (i.e. the sum across all ranks) for a given
layout based on the remainder of the hardware counter data. Both linear and cubic spline models
were attempted. For those familiar with the complex changes in factors driving performance over a
large scaling range, it is not surprising that the non-linear models were far better than linear models
at performance prediction, especially at the largest rank counts.

The layout set analyzed was more extensive than that presented in this paper so far19. One of the
reasons for this was to provide sufficient input training data. In fact, part of the work examined the
trade-off between the size of the training set and the predictive power of the resulting model.

One of the interesting aspects that HPMPROF provided was the ability to associate counts with
particular classes of activities. For example, the model differentiated between XU instructions
associated with model computation verses those associated with thread sync operations.

The results of the approaches attempted here are encouraging. For layouts with smaller numbers of
MPI ranks (4x4, 4x8, 8x8), the primary performance predictor was the number of FP operations
(i.e. the work to be done). At higher scales, factors associated with thread synchronization
operations (XU instructions and events producing dependency stall hardware counts) become an
increasingly dominant predictor. Thus, major results of regression model analysis are consistent
with the detailed findings presented in the previous sections

What's missing from this nascent work is what turns out to be the central result of the project:

The majority of the loss of scaling comes from the ever increasing total instruction count

But this is not really surprising. The time and resources available allowed for the development of
performance models within a given MPI layout. This is the obvious first step. But it remains the
case that any approach capable of arriving at the central result must at need probe relationships
across the layout set. And in developing the techniques, somehow one must incorporate the notion
that an increase in total count of some factors (e.g. XU instructions) is a negative for performance.
Is this a set of constraints or some kind of damping? Whatever it is, one must formulate a way to
incorporate it into the regression model.

While this is not the first attempt to apply these types of techniques to application performance20,
this may be the first attempt to apply Machine Learning to such a large, complex application.

18 For full details, see Appendix D.
19 4x4, 4x8, 4x8, 8x8, 8x16, 16x8 and 16x16
20 See for example reference LB06 in the full report

Page 23

5 Summary
The work of this project has applied the IBM BG/Q MPI and thread aware hardware performance
tools MPITRACE, HPM and HPMPROF to analyze the loss of scaling performance for the GFDL
3.5km resolution cubed-sphere atmosphere model. Initially it seemed quite reasonable to ascribe
scaling loss to communication issues and perhaps load imbalance. But detailed analysis of the data
seems to clearly demonstrate that the major factors are:

• The ever increasing total count of instructions associated with calculations in the subdomain
halos

• Increasing relative overheads of the OpenMP regions that had little work in them in the first
place

It is interesting to note that the issue with the halo calculations places fundamental limits on strong
scaling for applications that perform such operations. On the other hand, the issue with the OpenMP
overheads begs a couple of questions left unanswered by the current work:

• What portion of the overhead is thread count dependent?

• If there is such a dependency, might it improve performance to reduce the thread count for
these low work regions as one scales out?

• If there is no thread count dependency in the overhead, might it be better to turn off the
parallel region altogether?

In separate but related work, we have applied regression modeling with hardware counter data as
input in an attempt to predict performance. Within the scope of project resources and time, some
successful results were achieved with non-linear models within a particular model layout. But this
nascent work misses the role of expanding instruction counts due to the subdomain halos. Left for
future work is the development of techniques that can probe across layouts to arrive at the central
results concerning increasing instruction count and the loss of scaling performance.

6 Acknowledgements
We would like to thank the Argonne Leadership Computing Facility and the Early Science Program
for the funding and computation resources supporting this work.

We would also like to thank Bob Walkup of the IBM TJ Watson Research Center for numerous
conversations. His depth of knowledge concerning the details of the IBM BG/Q hardware and
software infrastructure as well as his willingness to provide ad-hoc modifications to the
performance toolset to support the data gathering were truly assets to the project.

Page 24

Appendix A

Page 25

C_SW

4x4 8x8 16x16

96 384 1536 384 / 96 1536 / 384 1536 / 96

Total Cycles 6.18E+13 5.92E+13 7.09E+13 0.96 1.20 1.15

Load Miss 2.70E+12 2.68E+12 2.93E+12 0.99 1.09 1.08

Cacheable Loads 2.66E+13 2.88E+13 3.39E+13 1.08 1.17 1.27

L1p Miss 5.53E+11 4.40E+11 5.80E+11 0.80 1.32 1.05

XU Inst 6.08E+13 6.74E+13 8.23E+13 1.11 1.22 1.35

AXU Inst 2.61E+13 2.74E+13 3.03E+13 1.05 1.10 1.16

XU / AXU 2.33 2.46 2.72 1.06 1.11 1.17

FP 3.54E+13 3.71E+13 4.07E+13 1.05 1.10 1.15

L2 Hit 6.32E+13 7.13E+13 8.47E+13 1.13 1.19 1.34

L2 Miss 3.70E+12 2.89E+12 1.72E+12 0.78 0.60 0.47

FPU % 30.05 28.93 26.89

FXU % 69.95 71.07 73.11

Bytes/cyc 12.608 8.968 5.625

IPC 0.69 0.78 0.77

Tot GF 85.70 373.95 1369.00

% Loads that hit in

L1D cache 89.84 90.70 91.36

L1p Buffer 8.07 7.78 6.93

L2 Cache 0.34 0.27 1.08

DDR 1.74 1.25 0.64

D_SW

4x4 8x8 16x16

96 384 1536 384 / 96 1536 / 384 1536 / 96

Total Cycles 1.84E+14 1.89E+14 2.26E+14 1.03 1.19 1.23

Load Miss 8.62E+12 8.36E+12 9.52E+12 0.97 1.14 1.10

Cacheable Loads 1.07E+14 1.17E+14 1.38E+14 1.09 1.18 1.29

L1p Miss 1.43E+12 1.14E+12 1.91E+12 0.80 1.68 1.34

XU Inst 2.19E+14 2.46E+14 3.05E+14 1.12 1.24 1.39

AXU Inst 2.03E+14 2.18E+14 2.48E+14 1.07 1.14 1.22

XU / AXU 1.08 1.13 1.23 1.05 1.09 1.14

FP 2.42E+14 2.59E+14 2.95E+14 1.07 1.14 1.22

L2 Hit 2.63E+14 2.87E+14 3.48E+14 1.09 1.21 1.32

L2 Miss 1.20E+13 1.17E+13 8.69E+12 0.98 0.74 0.72

FPU % 48.09 46.95 44.83

FXU % 51.91 53.05 55.17

Bytes/cyc 13.857 12.024 7.674

IPC 1.12 1.19 1.18

Tot GF 196.68 813.51 3094.00

% Loads that hit in

L1D cache 91.94 92.84 93.12

L1p Buffer 6.72 6.19 5.50

L2 Cache 0.00 0.00 0.60

DDR 1.34 0.98 0.79

Page 26

GEOPK

4x4 8x8 16x16

96 384 1536 384 / 96 1536 / 384 1536 / 96

Total Cycles 3.07E+13 3.33E+13 4.87E+13 1.09 1.46 1.59

Load Miss 3.85E+11 4.25E+11 5.75E+11 1.10 1.35 1.49

Cacheable Loads 2.70E+13 2.91E+13 3.80E+13 1.07 1.31 1.41

L1p Miss 1.19E+11 2.01E+11 4.47E+11 1.69 2.23 3.75

XU Inst 5.16E+13 5.58E+13 7.85E+13 1.08 1.41 1.52

AXU Inst 2.05E+13 2.20E+13 2.53E+13 1.08 1.15 1.23

XU / AXU 2.52 2.53 3.11 1.01 1.23 1.23

FP 3.40E+13 3.65E+13 4.19E+13 1.07 1.15 1.23

L2 Hit 3.50E+13 4.14E+13 5.45E+13 1.18 1.31 1.56

L2 Miss 1.49E+12 1.26E+12 1.33E+12 0.84 1.06 0.89

FPU % 28.42 28.32 24.34

FXU % 71.58 71.68 75.66

Bytes/cyc 10.04 6.94 4.43

IPC 1.16 1.15 1.01

Tot GF 168.51 663.39 2001.00

% Loads that hit in

L1D cache 98.57 98.54 98.49

L1p Buffer 0.99 0.77 0.34

L2 Cache 0.00 0.15 0.74

DDR 0.44 0.54 0.44

Appendix B

First, a little about HPMPROF vs HPM. HPMPROF is a profiler that references the program
counter at a specified sampling rate based on the overflow of a particular counter and so we are able
to pick out individual subroutines (indeed the sample can be mapped to specific lines within a
subroutine). HPM on the other hand simply reads the counter between a program start and stop
point and thus measures everything in between.

In particular, the HPMPROF data selected out here excludes everything that is not an FMS source
code routine while the HPM data includes all runtime library calls (math, openMP, etc). Further,
HPM was configured to sum a particular counter value across all threads associated with an
MPI-rank. In contrast, the version of HPMPROF used here records the value for Thread-0 only.

For HPM, separately named calipers were placed around the D_SW, C_SW and GEOPK call
chains. The runtime configuration produced an average value (as well as min and max) across all
ranks. The HPM average for a particular counter was used to arrive at a global total21.

In contrast, the HPMPROF data provides a given counter broken down by subroutine. Global
counts (for Thread-0) were calculated by summing across the per rank files.

The key observation for the analysis is that to the extent that the Thread-0 XU and AXU data
exemplifies the true average across threads, the HPMPROF counts will be 1/8 the HPM counts. The
different approaches yield strikingly congruent results for the D_SW and C_SW call chains while
the comparison yields discordant results for GEOPK (which contains only the subroutine geopk).
Luckily GEOPK comprises only about 7% of total cycles across the scaling range.

The following tables contain the HPMPROF data for a particular call chain on the left and the HPM
data for that chain on the right.

21 Simply GTot = NMPI * Avg

Page 27

C_SW

FP

4x4 8x8 16x16

c_sw 2754274 2860094 3066215

d2a2c_vect 993311 1080560 1262994 hpm over C_SW call chain

divergence_corner 653389 677691 730424 4x4 8x8 16x16

Total*10^6 4.40E+12 4.62E+12 5.06E+12 3.54E+13 3.71E+13 4.07E+13

hpm/(8*hprof) 1.00 1.00 1.00

XU

4x4 8x8 16x16

c_sw 5453249 5902115 6838298

d2a2c_vect 1185742 1398483 1852352 hpm over C_SW call chain

divergence_corner 855872 935429 1121178 4x4 8x8 16x16

Total*10^6 7.49E+12 8.24E+12 9.81E+12 6.08E+13 6.74E+13 8.23E+13

hpm/(8*hprof) 1.01 1.02 1.05

Later in the project, we were supplied a version of the profiling library that attempts to sum across
the thread team rather than rely on Thread-0. While there are some substantial caveats when
attempting to perform interrupt driven profiling in a multi-threaded environment, HPMPROF_smp
worked extremely well for the calipered experiments being performed. The results from this series
of data focusing on cycle counts was consistent with the notion that the D_SW and C_SW call
chains contain very low amounts of OpenMP overheads while GEOPK has a rather high percentage
of cycles associated with OpenMP.

Page 28

D_SW

FP

4x4 8x8 16x16

fyppm 9328545 10058426 11608209

fxppm 9300661 10031083 11584917

d_sw 3975705 4152380 4534689

fv_tp_2d 3815718 4079314 4603914

pert_ppm 2162231 2309012 2615015

ytp_v 1371861 1446332 1587308 hpm over D_SW call chain

xtp_u 1370466 1441689 1590149 4x4 8x8 16x16

Total*10^6 3.13E+13 3.35E+13 3.81E+13 2.42E+14 2.59E+14 2.95E+14

hpm/(8*hprof) 0.96 0.97 0.97

XU

4x4 8x8 16x16

fyppm 8776815 9639592 11738500

fxppm 7030601 7905075 9829224

d_sw 5443156 6129611 7602831

fv_tp_2d 3069435 3371721 4099711

pert_ppm 1192443 1310706 1604727

ytp_v 1383861 1515908 1788126 hpm over D_SW call chain

xtp_u 1055107 1167702 1361353 4x4 8x8 16x16

Total*10^6 2.80E+13 3.10E+13 3.80E+13 2.19E+14 2.46E+14 3.05E+14

hpm/(8*hprof) 0.98 0.99 1.00

GEOPK

FP

4x4 8x8 16x16 hpm over GEOPK call chain

geopk 2474017 2265588 2565790 4x4 8x8 16x16

Total*10^6 2.47E+12 2.27E+12 2.57E+12 1.93E+13 2.09E+13 2.46E+13

hpm/(8*hprof) 0.97 1.16 1.20

XU

4x4 8x8 16x16 hpm over GEOPK call chain

geopk 2241672 2310471 3069864 4x4 8x8 16x16

Total*10^6 2.24E+12 2.31E+12 3.07E+12 2.71E+13 2.95E+13 4.20E+13

hpm/(8*hprof) 1.51 1.60 1.71

There results for the 16x16 and 8x8 MPI configurations are presented below. Since the counts can
be picked out by subroutine, there was some ambiguity as to how account some of the routines that
were not either FMS source or IBM math libraries (e.g. log, tanh, etc). In particular, OpenMP
implementations encapsulate the parallel region in a subroutine call. For IBM XLF, these routines
show up with the name $$OL$$22. The data below present the total counts sampled, those that
OpenMP related except the $$OL$$ routine and then a similar calculation where counts associated
with the $$OL$$ are tabulated as OpenMP overhead. These results are consistent with the
HPMPROF vs HPM analysis.

22 The IBM XL compiler's OpenMP “outliner” which packages a code section into a thread function.

Page 29

HPMProf_SMP Cycles

16x16 Total OMP % OMP OMP+OL (OMP+OL)%

D_SW 590349 2596 0.44% 6746 1.14%

C_SW 178398 2483 1.39% 3130 1.75%

GEOPK 112648 7519 6.67% 47124 41.83%

8x8 Total OMP % OMP OMP+OL (OMP+OL)%

D_SW 968407 2230 0.23% 7704 0.80%

C_SW 297617 1460 0.49% 1731 0.58%

GEOPK 166730 5772 3.46% 64728 38.82%

Appendix C

The following table contains the data provided by HPM calipers around each of the code regions
D_SW, C_SW and GEOPK. HPM is run with the non-default settings HPM_THREADS=1 and
HPM_GROUP=5. Setting the number of threads per core to 1 gives that thread access to all 24 of
the core's event registers while HPM_GROUP 5 is setup to collect a detailed accounting of all XU
instructions. The output provides the global average for each core and the values for the 16x16 and
8x8 decompositions are provided in the table below:

Table C.1

The Global Total is derived by multiplying the Single Thread / core average by the number of ranks.
Further, in order to compare the Grand Total with the HPM results in Appendix A, one must also
multiply by the 4 threads per core as is done in the table above.

Page 30

16x16 d_sw c_sw geopk 8x8 d_sw c_sw geopk

FP LD 2.11E+10 4.83E+09 5.12E+09 FP LD 7.38E+10 1.76E+10 1.61E+10

FP ST 6.84E+09 1.66E+09 1.39E+09 FP ST 2.39E+10 5.91E+09 4.39E+09

Quad LD 5.76E+06 0.00E+00 6.91E+05 Quad LD 1.45E+07 0.00E+00 2.59E+06

Quad ST 2.23E+07 0.00E+00 6.91E+05 Quad ST 8.03E+07 0.00E+00 2.59E+06

Bit Manip 6.83E+08 3.12E+08 8.08E+08 Bit Manip 1.17E+09 8.75E+08 2.32E+09

BR Cond 6.96E+09 1.67E+09 1.36E+09 BR Cond 2.25E+10 5.41E+09 3.43E+09

BR Uncond 4.87E+08 3.26E+08 2.43E+08 BR Uncond 1.59E+09 1.14E+09 7.31E+08

Cache Invalid 0.00E+00 0.00E+00 0.00E+00 Cache Invalid 0.00E+00 0.00E+00 0.00E+00

Cache ST 0.00E+00 0.00E+00 0.00E+00 Cache ST 0.00E+00 0.00E+00 0.00E+00

Cache Touch 3.28E+05 2.47E+05 4.69E+05 Cache Touch 9.14E+05 3.81E+05 5.42E+05

INT Arith 9.40E+09 2.89E+09 9.44E+08 INT Arith 2.96E+10 9.31E+09 2.34E+09

Cmp Inst 7.21E+08 3.76E+08 6.02E+08 Cmp Inst 1.40E+09 9.87E+08 1.38E+09

INT Div 5.76E+04 5.76E+04 1.15E+05 INT Div 5.76E+04 5.76E+04 1.15E+05

LOG Inst 6.58E+08 2.79E+08 4.35E+08 LOG Inst 1.21E+09 7.28E+08 1.20E+09

Reg mv 4.96E+08 9.63E+07 5.63E+07 Reg mv 9.24E+08 1.91E+08 8.21E+07

INT Mult 5.57E+08 1.84E+08 1.14E+08 INT Mult 9.96E+08 3.36E+08 1.98E+08

Interrupt 5.86E+05 3.09E+05 7.17E+05 Interrupt 1.77E+06 5.87E+05 8.19E+05

LD 1.62E+09 6.83E+08 1.23E+09 LD 2.98E+09 1.13E+09 2.86E+09

ST 5.16E+08 1.60E+08 4.35E+08 ST 9.24E+08 2.43E+08 1.18E+09

LD / ST & Res 6.44E+05 4.23E+05 9.67E+05 LD / ST & Res 1.27E+06 6.77E+05 1.13E+06

Context Sync 3.48E+06 2.01E+06 4.62E+06 Context Sync 8.86E+06 3.53E+06 5.44E+06

Sngl Thd/core Avg 5.01E+10 1.35E+10 1.28E+10 Sngl Thd/core Avg 1.61E+11 4.39E+10 3.62E+10

Global Total (proj) 3.08E+14 8.27E+13 7.83E+13 Global Total (proj) 2.47E+14 6.74E+13 5.56E+13

To aid the analysis, we break the list into instruction types:

Table C.2

Table C.3

Table C.4

Table C.5

Page 31

Cacheable LDs

16x16 d_sw c_sw geopk 8x8 d_sw c_sw geopk

FP LD 2.11E+10 4.83E+09 5.12E+09 FP LD 7.38E+10 1.76E+10 1.61E+10

Quad LD 5.76E+06 0.00E+00 6.91E+05 Quad LD 1.45E+07 0.00E+00 2.59E+06

LD 1.62E+09 6.83E+08 1.23E+09 LD 2.98E+09 1.13E+09 2.86E+09

Sngl Thd/core Avg 2.27E+10 5.51E+09 6.36E+09 Sngl Thd/core Avg 7.68E+10 1.87E+10 1.89E+10

Global Total (proj) 1.40E+14 3.39E+13 3.91E+13 Global Total (proj) 1.18E+14 2.88E+13 2.90E+13

Stores

16x16 d_sw c_sw geopk 8x8 d_sw c_sw geopk

FP ST 6.84E+09 1.66E+09 1.39E+09 FP ST 2.39E+10 5.91E+09 4.39E+09

Quad ST 2.23E+07 0.00E+00 6.91E+05 Quad ST 8.03E+07 0.00E+00 2.59E+06

ST 5.16E+08 1.60E+08 4.35E+08 ST 9.24E+08 2.43E+08 1.18E+09

Sngl Thd/core Avg 7.38E+09 1.82E+09 1.83E+09 Sngl Thd/core Avg 2.49E+10 6.15E+09 5.58E+09

Global Total (proj) 4.53E+13 1.12E+13 1.12E+13 Global Total (proj) 3.82E+13 9.45E+12 8.56E+12

Branch

16x16 d_sw c_sw geopk 8x8 d_sw c_sw geopk

BR Cond 6.96E+09 1.67E+09 1.36E+09 BR Cond 2.25E+10 5.41E+09 3.43E+09

BR Uncond 4.87E+08 3.26E+08 2.43E+08 BR Uncond 1.59E+09 1.14E+09 7.31E+08

Sngl Thd/core Avg 7.45E+09 1.99E+09 1.60E+09 Sngl Thd/core Avg 2.41E+10 6.55E+09 4.16E+09

Global Total (proj) 4.58E+13 1.22E+13 9.83E+12 Global Total (proj) 3.71E+13 1.01E+13 6.39E+12

Other

16x16 d_sw c_sw geopk 8x8 d_sw c_sw geopk

Bit Manip 6.83E+08 3.12E+08 8.08E+08 Bit Manip 1.17E+09 8.75E+08 2.32E+09

Cache Touch 3.28E+05 2.47E+05 4.69E+05 Cache Touch 9.14E+05 3.81E+05 5.42E+05

INT Arith 9.40E+09 2.89E+09 9.44E+08 INT Arith 2.96E+10 9.31E+09 2.34E+09

Cmp Inst 7.21E+08 3.76E+08 6.02E+08 Cmp Inst 1.40E+09 9.87E+08 1.38E+09

INT Div 5.76E+04 5.76E+04 1.15E+05 INT Div 5.76E+04 5.76E+04 1.15E+05

LOG Inst 6.58E+08 2.79E+08 4.35E+08 LOG Inst 1.21E+09 7.28E+08 1.20E+09

Reg mv 4.96E+08 9.63E+07 5.63E+07 Reg mv 9.24E+08 1.91E+08 8.21E+07

INT Mult 5.57E+08 1.84E+08 1.14E+08 INT Mult 9.96E+08 3.36E+08 1.98E+08

Interrupt 5.86E+05 3.09E+05 7.17E+05 Interrupt 1.77E+06 5.87E+05 8.19E+05

Context Sync 3.48E+06 2.01E+06 4.62E+06 Context Sync 8.86E+06 3.53E+06 5.44E+06

Sngl Thd/core Avg 1.25E+10 4.14E+09 2.97E+09 Sngl Thd/core Avg 3.53E+10 1.24E+10 7.53E+09

Global Total (proj) 7.69E+13 2.55E+13 1.82E+13 Global Total (proj) 5.42E+13 1.91E+13 1.16E+13

Note that both the XU Grand Total in Table C.1 and Cacheable LDs in Table C.2 are in very good
agreement with the values in Appendix A.

Page 32

Appendix D

Page 33

Regression Modeling for Application Performance Prediction

April 23, 2014

Abstract

We perform regression modeling to obtain estimates of the number of cycles (used as a proxy
for application performance). A linear regression is performed in which the response (number
of cycles) is a weighted sum of predictor variables1 (such as L1P misses, AXU instructions,
XU instructions, FP operations, etc.) plus some random noise. Since linear relationships
may not always be adequate to model the relationship between the predictors and response,
non-linear modeling using cubic splines [Wah90] have also been performed. Both the linear
and non-linear models are evaluated on blind test data using the R-squared and Mean Square
Error (MSE) metric. Our results indicate that non-linear models are much better (higher
R-squared) in capturing the characteristics of application performance modeling.

1 Regression Theory

1.1 Linear Models

The linear regression model is used extensively in the statistics and machine learning community. We
describe the model here: Let Xi = (Xi1, Xi2, · · · , XiP), 1 ≤ i ≤ N denote real valued random input vectors
and Yi ∈ R, 1 ≤ i ≤ N the real valued output corresponding to Xi. The goal is to predict the output vector
Y using the model:

Ŷi = β0 +
P∑

j=1

Xjβj (1)

where βT = (β0, β1, · · · , βP) denotes the set of regression coefficients. The term β0 is also known as the
intercept or bias in machine learning literature. Equation 1 is often written as an inner product by including
the bias term β0 in the coefficient vector and adding the constant variable 1 in X [HTF] as follows:

Ŷ = Xβ (2)

In the (P + 1)-dimensional input-ouput space, (Xi, Ŷi) represents a hyperplane. If the constant is included
in Xi then the hyperplane includes the origin and is a subspace; if not, it is an affine set cutting the Y-axis
at β0. The most popular method of fitting a linear model to the data available for training is to use the
method of least squares. The coefficients β are picked by minimizing the Residual Sum of Squares (RSS):

RSS(β) =

N∑

i=1

(Yi − β0 −

P∑

j=1

Xijβj)
2 (3)

RSS(β) can be minimized by solving a system of P + 1-partial derivatives of RSS(β) with respect to
βj , j ∈ [0, p]. The solutions of this system are the estimates of coefficients in Equation 1.

1Also interchangeably called features or attributes.

1

1.2 Non-Linear Models

The assumption that the response behaves linearly with the predictors is somewhat restrictive. Relaxing this
assumption, predictors suspected of having a non-linear correlation with the response are allowed to undergo
polynomial transformations. However, polynomials have peaks and valleys and good fits in one region may
adversely affect the fit in another region [LB06].

Spline functions are considered a better alternative in modeling non-linearity. These are piecewise poly-
nomials used in curve fitting. A function is broken down into intervals defining multiple different continuous
polynomials with endpoints called knots. The number of knots can vary but more knots typically correlate
to better fits. An order-M spline with knots ξj , j = 1, · · · , K is a piecewise polynomial of order M and has
continuous derivatives upto order M −2. A cubic spline has M = 4. In practice, the most widely used orders
are M = 1, 2, and, 4 [HTF].

1.3 Evaluation

1.3.1 Assessing Fit

The coefficient of determination, denoted by R2 is typically used to indicate how well the data fits the model.
In case of linear regression, if an intercept is included, then R2 is simply the square of the sample correlation
coefficient between the outcomes and their predicted values. Let ȳ = 1

n

∑n

i=1 yi represent the mean of the
observed data. The “variability” of the data is measured by different metrics: (a) Total sum of squares
SST =

∑
i(yi − ȳ)2. (b) Residual sum of squares SSE =

∑
i(yi − fi)

2. R2 is defined as follows:

R2 = 1 −
SSE

SST
(4)

An R2 of 1 indicates that the regression line perfectly fits the data; however, a value too close to R2 = 1
may also indicate over-fitting.

1.3.2 Generalization Performance

The generalization performance of a learning model relates to its predictive ability on an independent test set.
Assessment of this performance is of consequence since it is likely to guide the choice of the model, parameter
space and measure of the quality of the model. We distinguish between the notions of training error and test
error: (a) Training error: is the average loss over the training sample. Training Error = 1

N

∑N

i=1 L(Yi, Ŷi)
where L is the loss function. (b) Test error also called Generalization error is the prediction error over an
independent test sample. Test Error = E[L(Yi, Ŷi)|T], where T is a fixed training set. Thus test error is
always determined with reference to a specific training set, such as T .

2 Data collected for performance prediction

Performance data was collected using two tools – Hardware Performance Monitor (HPM) and HPMPROF
– that were installed on the Blue Gene system. The tools are part of the standard IBM toolset. We used
custom shell and Python scripts to parse and massage the output to make it in a form suitable for input into
PerfBrowser, a proprietary software for visualizing performance data. PerfBrowser makes it easy to compare
and visualize data across multiple experiments.

2.0.3 HPM and HPMPROF

HPM is an IBM tool for gathering hardware performance metrics, such as cache misses, on IBM architectures.
It is part of the IBM High Performance computing toolkit. The tool has negligible runtime overhead. It
requires the program to be linked with HPM libraries. HPM also supports start/stop sentinels to measure
performance metrics in specific code regions. We used HPM to gather metrics both for the program, and the
main compute region.

HPM can run in two scopes: node and process. In the node mode, data is collected at a per-node
basis, while in the process mode, data is collected for each process (MPI rank). The environment variable

2

Figure 1: Sample HPM output for the 4x4 layout

HPM SCOPE is used to select the mode. We used the process mode. While collecting data in a process
mode, care has to be taken while interpreting metrics that used shared counters, such as L2 misses. A2
counters, are easy to interpret as the specific to each core. HPM can select a combination of performance
counters based on HPM GROUP . For our experiments, we primarily used HPM GROUP zero.

Another HPM environment setting that is worth mentioning is SAV E ALL TASKS. By default, HPM
presents a final summary by aggregating data across tasks. The summary is concise, but loses the data
variation across ranks. We used HPM, both with and without the variable to collect data for individual
tasks and job statistics (See Figure 1).

HPMPROF allows statistical profiling of a performance event, such L1-D misses. A performance threshold
and a performance event is selected for a run. A counter is incremented on each occurrence of the event.
Once the threshold is reached, an overflow is said to occur, and the counter is reset, and a counter associated
with a program counter value is incremented. Assuming enough overflows, profile generated attributes the
performance event to specific code sections. We used hpmprof to profile total cycles, L1-misses, instructions
executed, FP operations and dependency stalls. We also used the SAV E ALL TASKS environment variable
to save per-rank data to detect variability across ranks. Similar to HPM, HPMPROF requires the program
to be linked with HPMPROF libraries (See Figure 2).

PerfBrowser is a cloud HPC performance data visualization software. It’s hosted and maintained by
Samara Technology Group LLC. Once performance data is collected using a supported performance tool,
it’s uploaded to PerfBrowser. PerfBrowser allows comparison of performance metrics across varying process
counts and experiments. It produces both textual diffs and plots, making it easy to spot reasons for reduced
scaling and performance. As part of this project, we extended PerfBrowser to import HPM and HPMPROF
output formats (See Figures 3, 4, 5). In the data import plugin, we added a feature to allow aggregating
performance metrics in thread synchronization and MPI calls. This made it easier to abstract out performance
data that was not attributable to useful work done by the program.

We collected performance data for a variety of layouts after reducing the problem to an equivalent smaller
problem size. For each layout, we used 8 threads per rank, and 8 ranks per node. We had also tried other
thread and rank counts per node, but determined the 8thread/rank and 8ranks/node test case as one that
yielded the fastest time to solution [Why?]. To make the data collection systematic, we wrote scripts to
iterate over the layout parameters. We used the following layouts: 4x4, 4x8, 8x4, 8x8, 8x16, 16x8 and 16x16.
[Insert script source for data collection?]

Table 1 describes the features generated for each layout which are then used for learning regression models.
The total number of samples generated for each configuration is listed in Table 2. This is further split into
train-test pairs by randomly sampling 70% percent for training [The Appendix provides a justification of
how the percentages for splitting the data were obtained].

3

Figure 2: Sample HPMPROF output for INST XU ALL.

3 The Regression Models

Linear Models: Table 4 presents the six linear regression models obtained for each layout. Interestingly,
the R2 values for layouts 4 × 4, 4 × 8, 8 × 8 are substantially higher (≥ 0.73) than the other layouts. This
may be attributed to the fact that past 8× 8, the loss of scaling is driven by the operations performed in the
halo region. These operations are the same types of operations performed in the computational region and
so the factors driving their performance are similar. But the halo computations are in fact redundant and
do not in and of themselves move the solution forward. They are, however, preferable to communicating the
values from the native MPI rank since communication has its own expenses. The summary of performance
prediction error from the models on training data2 is shown in Table 6.

The residuals versus fitted values and Quantile-Quantile (Q-Q) plots of standardized residuals for two
layouts 8X8 and 16X16 are shown in Figure 6. The quantile plot is used to determine if the residuals are
close to being normally distributed; the theoretical line that the data should fall on if they were normally
distributed is also plotted for comparison.
Cubic Spline Models: A different class of models called Generalized Additive Models [HT86] replaces the

linear function in Equation 1 by an additive function
∑P

j=1 sj(Xj). A local scoring algorithm is used for

estimating the sj()’s and a spline smoother3 is used for our problem. The mean of each variable is used to
define the knots. Table 6 summarizes the models and their performance. Most notably, the R2 values are
much higher (≥ 0.9) for all the six layouts. For the 16X16 layout, the highest coefficient is observed for the
L1D.Misses which play a significant role in performance prediction. Figure 7 shows the residuals vs fitted

2In all of the experiments here, the training data is approximately 70% of the instances randomly chosen. The R
2 and MSE

values are estimated on the remaining 30% of the data which acts as ’blind’ test data. This choice is justified by the fact that
not much variability in performance is noted using more (90%) or less (50%) data for training as reported in the Appendix.

3Note that it is also possible to use other smoothers such as local average estimates or kernels for scoring.

4

Feature Description
Committed.Load.Misses L1 D-cache load misses
Committed.Cacheable.Loads Total loads
L1p.miss Loads that missed the L1P buffer
All.XU.Instruction.Completions All execution unit instructions (arithmetic, FP)
All.AXU.Instruction.Completions
FP.Operations.Group.1 Specific class of FP instructions (on BG/Q)
Dep.Stalls Stalls cycles due to some dependency
DS.THREAD.SYNC Dep. stalls in a thread sync function
DS.COMM Dep. stalls in an communication function
DS.THREAD.SYNC.COMM Dep. stalls in a thread sync/comm. function
FP.Grp1 FP operations Group 1
FP.THREAD.SYNC Floating Point operations in a thread sync function
FP.COMM FP operations in a communication function
FP.THREAD.SYNC.COMM FP in a thread sync/comm function
INST.XU.ALL All XU Instruction completions
XU.THREAD.SYNC XU instructions in a thread sync function
XU.COMM XU instructions in a communication function
XU.THREAD.SYNC.COMM XU instruction in a thread sync/comm function
L1D.Misses L1 D-Cache misses
L1D.THREAD.SYNC L1 D-cache misses in a thread sync function
L1D.COMM L1 D-cache miss in a communication function
L1D.THREAD.SYNC.COMM L1 D-cache miss in a thread sync/comm. function
L1P.Misses L1P misses
L1P.THREAD.SYNC L1P misses in a thread sync function
L1P.COMM L1P misses in a thread sync function
L1P.THREAD.SYNC.COMM L1P misses in a thread sync or comm. function
L2.trunc L2 misses per node

Table 1: Features used for building Regression Models.

values and Quantile-Quantile plots for cubic spline models from two layouts (8X8 and 16X16).
Discussion: In the modeling tasks above, regression analysis has been used to produce an equation that
will predict a dependent variable (number of cycles) using one or more independent variables (such as,L1
Misses, FP Operations, etc.). For example, the equation for predicting the performance of the 4 × 4 layout
using a linear model is as follows:

Number of cycles = 4.71e+12 − 2.17e-03(Committed.Load.Misses) − 2.63e-04(Committed.Cacheable.Loads)

− 1.197e-03(L1p.miss) + 1.22e-04(All.XU.Instruction.Completions)

+ 7.18e-05(All.AXU.Instruction.Completions) − 6.22e-06(FP.Operations.Group1)

− 1.90e+01(Dep.Stalls) + 1.14e+02(DS.Thread.Sync) + 1.38e+02(DS.Comm)

− 6.36e+02(FP.Grp1) + 5.87e+05(FP.Thread.Sync) + 2.14e+02(FP.Comm)

− 6.96e+02(Inst.XU.All) + 3.06e+02(XU.Thread.Sync) + 5.48e+02(XU.Comm)

+ 1.85e+04(L1D.Misses) + 1.80e+04(L1D.Thread.Sync) − 1.56e+04(L1D.Comm)

+ 1.04e+04(L1P.Misses) + 2.49e+04(L1P.Thread.Sync) − 4.83e+03(L1P.Comm)

+ 2.11e-04(L2Misses)

The sign (positive or negative) of a coefficient plays a crucial role in interpretation of the models. For example,
in the above equation, the number of cycles is predicted to increase by 7.18e-05 when All.AXU.Instruction.Completions
variable goes up by 1 (holding all other variables constant), decrease 6.96e+02 when Inst.XU.All variable goes

5

Configuration No. of Samples
4X4 96
4X8 192
8X8 384
8X16 768
16X8 768
16X16 1536

Table 2: No. of samples generated for each configuration.

Layout Min 1st Quartile Median 3rd Quartile Max
4X4 -1978884 -440959 0 554486 1788585
4X8 -5180186 -438508 -7788 441921 2373970
8X8 -5306584 -359207 16723 392478 1681010
8X16 -10971711 -268247 19408 290437 2306172
16X8 -0.008021 -0.001059 -0.000138 0.00079 0.125156
16X16 -0.091776 -0.999322 0.000006 0.000436 0.003262

Table 3: Summary of performance prediction error in different layouts.

up by 1 (holding all other variables constant), and is 4.71e+12 when all the independent variables take a value
0. In addition, the coefficient with the highest positive value (other than the intercept), FP.Thread.Sync in
the above model may be interpreted to be the most significant variable when constructing the model. Sorting
variables by the coefficients therefore gives some notion of their relative importance in the model. Based on
the above criteria, the top 5 drivers of performance in the different layouts are shown i n Table 3.

In regression problems, f(X) = E(Y |X) will typically be non-linear and non-additive in X, but repre-
senting f(X) as a linear problem is often a necessary approximation. To go beyond linearity, the vector
inputs X is typically augmented or replaced with additional variables which are transformations of X and
then linear models are used in this new space of derived input features.

Let hm(X) : RP → R be the mth transformation of X – some examples of hm(X) include hm(X) =
Xm, m = 1, 2 · · · , p (which recovers the original linear model) and hm(X) = X2

j or hm(X) = XiXj which al-

lows inclusion of polynomial terms. The regression model that can be learnt is then f(X) =
∑M

m=1 βmhm(X)
which is often called a linear basis expansion of X.

Piecewise polynomials or splines can be used as transformations of X. A piecewise polynomial function is
obtained by dividing the domain of X into contiguous intervals, and representing each interval by a separate
polynomial. In our experiments, we have adapted this technique and each variable is represented by a cubic

spline. The domain of each variable is split into two parts (min(X), mean(X)) and (mean(X), max(X)) and
each of these parts are represented by a cubic polynomial also called a natural cubic spline. The mean acts
as a knot4. Thus, for all the models reported in Table 6, the number of variables used for prediction is twice
the number of variables used in the linear regression models. In this new space of variables, a linear model is
learnt. Looking at the coefficients of this linear model, still conveys important information about the drivers
of performance. For instance, the following are the top drivers of performance in the six layouts in the cubic
spline models:

• 4X4: FP.Grp1

• 4X8: FP.Thread.Sync

• 8X8: FP.Thread.Sync

• 8X16: FP.Thread.Sync.Comm, DS.Thread.Sync and XU.Thread.Sync

4The choice of where a knot should be placed and how many knots should be included is a design consideration.

6

Model 4X4 Model 4X8 Model 8X8 Model 8X16 Model 16X8 Model 16X16
(Intercept) 4.712e+12∗∗∗ 2.341e+12∗∗∗ 1.191e+12∗∗∗ 6.898e+11∗∗∗ 6.962e+11∗∗∗ 4.304e+11∗∗∗

Committed.Load.Misses -2.179e-03∗ 1.189e-03∗ -5.569e-04 -1.498e-03∗∗∗ 2.468e-12 1.469e-13
Committed.Cacheable.Loads -2.636e-04∗ -4.892e-04∗∗∗ -7.079e-04∗∗∗ -4.901e-05 1.280e-12∗ -5.184e-13
L1p.miss -1.197e-03 -2.533e-03∗∗ -2.701e-03∗∗∗ -6.810e-05 -4.285e-12 2.635e-12
All.XU.Instruction.Completions 1.222e-04∗∗∗ 9.978e-05∗∗∗ 2.392e-04∗∗∗ 3.387e-06 -3.902e-13 1.822e-13
All.AXU.Instruction.Completions 7.180e-05 1.520e-04∗ 1.147e-04 2.246e-04∗∗ -1.397e-12∗ 1.013e-13
FP.Operations.Group.1 -6.228e-06 -1.709e-04 -5.233e-05 -1.991e-04∗∗ 1.096e-12∗ -3.436e-13
Dep.Stalls -1.900e+01 1.416e+02∗∗ -4.793e+01 -1.623e+02∗∗ 2.007e-07 4.121e-08
DS.Thread.Sync 1.142e+02 -1.003e+02 -2.797e+02∗∗∗ -1.500e+02 5.750e-07 -8.095e-07∗∗

DS.Comm 1.381e+02 3.258e+01 -5.848e+02 2.392e+02∗ 2.411e-07 1.109e-07
FP.Grp1 -6.360e+02∗∗ 8.650e+01 -2.448e+02 -1.311e+01 -3.578e-07 1.480e-06∗

FP.Thread.Sync 5.879e+05 4.277e+05∗ -8.476e+04 -6.057e+04 - -
FP.Comm 2.145e+02 -2.476e+04 -1.828e+04 -1.022e+04 3.125e-04∗∗∗ -4.930e-05
Inst.XU.All -6.964e+02∗∗∗ -8.812e+02∗∗∗ -1.601e+03∗∗∗ -1.587e+03∗∗∗ 6.137e-07 -7.628e-07
XU.Thread.Sync 3.062e+02 6.631e+02∗∗ 1.377e+03∗∗∗ 1.759e+03∗∗∗ 3.652e-07 5.955e-07
XU.Comm 5.482e+02∗∗∗ 9.925e+02∗∗∗ 2.114e+03∗∗∗ 1.687e+03∗∗∗ -9.636e-07 8.929e-07
L1D.Misses 1.856e+04∗∗∗ 7.652e+02 1.341e+04∗∗∗ 3.309e+04∗∗∗ -2.032e-05 -2.315e-06
L1D.Thread.Sync 1.804e+04 7.462e+03 -6.810e+03 -5.532e+03 -2.626e-05 -4.516e-06
L1D.Comm -1.564e+04 3.322e+02 -6.314e+03 -8.872e+03∗∗∗ -1.159e-06 -2.306e-05∗

L1P.Misses 1.049e+04∗ 9.987e+03∗∗ 1.943e+04∗∗∗ 4.312e+03 -4.351e-05 -1.026e-05
L1P.Thread.Sync 2.495e+04 -3.736e+03 1.352e+04∗∗ -3.172e+03 4.612e-06 4.778e-06
L1P.Comm -4.826e+03 -1.293e+03 4.204e+02 -1.462e+03 3.400e-06 1.400e-05
L2.trunc 2.106e-04 -1.459e-03∗∗∗ -2.438e-04 1.137e-04 -7.810e-14 -5.104e-13
R2 0.89 0.74 0.73 0.54 0.49 0.50
Adj. R2 0.85 0.69 0.71 0.52 0.48 0.49
MSE 1.09e+12 5.22e+11 3.39e+11 3.45e+11 2.72e+12 1.36e+12
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4: Linear Regression Models for layouts 4 × 4, 4 × 8, 8 × 8, 8 × 16, 16 × 8, 16 × 16.

• 16X8: DS.Thread.Sync and DS.Comm

• 16X16: DS.Thread.Sync and XU.Thread.Sync

It therefore appears that in smaller layouts, 4X4, 4X8, and 8X8 performance prediction is dominated by FP
operations while for larger layouts 8X16, 16X8 and 16X16 DS.Thread.Sync and XU.Thread.Sync appears to
play a major role.

References

[HT86] T. Hastie and R. Tibshirani. Generalized additive models. Statistical Science, 1(3):297–318, October
1986.

[HTF] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.

[LB06] B. C. Lee and D. M. Brooks. Accurate and efficient regression modeling for microarchitectural
performance and power prediction. ASPLOS, October 2006.

[Wah90] Grace Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Conference

Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1990.

7

4X4 4X8 8X8 8X16 16X8 16X16
FP.Thread.Sync FP.Thread.Sync L1P.Misses L1D.Misses FP.Comm L1P.Comm
L1P.Thread.Sync L1P.Misses L1P.Thread.Sync L1P. Misses L1P.Thread.Sync L1P.Thread.Sync
L1D.Misses L1D.Thread.Sync L1D.Misses XU.Thread.Sync L1P.Comm Fp.Thread.Sync
L1D.Thread.Sync XU.Comm XU.Comm XU.Comm Inst.XU.All XU.Comm
L1P.Misses L1D.Misses XU.Thread.Sync FP.Grp1 DS.Thread.Sync XU.Thread.Sync

Table 5: Top 5 drivers of performance in linear models for different layouts.

(a) HPM DIFF

(b) HPM PLOT

Figure 3: Perfbrowser with HPM

8

Figure 4: Perfbrowser with HPMPROF-DIFF

9

Figure 5: Perfbrowser with HPMPROF-PLOT

10

(a) 8× 8

(b) 16× 16

Figure 6: Residuals vs Fitted and Q-Q plots for two layouts using linear regression models.

11

(a) 8× 8

(b) 16× 16

Figure 7: Residuals vs Fitted and Q-Q plots for two layouts using cubic spline models.

12

Model 4X4 Model 4X8 Model 8X8 Model 8X16 Model 16X8 Model 16X16
(Intercept) 4.712e+12 2.341e+12 1.190e+12 6.896e+11 6.962e+11 4.304e+11
Committed.Load.Misses.Knot1 1.113e+07 1.976e+06 1.194e+05 -5.000e+05 3.526e+05 3.482e+05
Committed.Load.Misses.Knot2 6.992e+06 1.500e+06 4.914e+05 -6.052e+05 -1.116e+05 2.312e+05
Committed.Cacheable.Loads.Knot1 -3.158e+07 -6.511e+06 -8.193e+06 -6.052e+05 -2.890e+06 -5.362e+05
Committed.Cacheable.Loads.Knot2 -1.492e+07 -2.946e+06 -5.166e+06 -1.317e+06 -2.301e+06 -1.830e+06
L1p.Miss.Knot1 -8.153e+06 -2.474e+06 -1.468e+06 2.696e+05 -1.353e+06 -1.127e+05
L1p.Miss.Knot2 -6.253e+06 -3.158e+06 -2.262e+06 -3.068e+05 -1.970e+06 -9.648e+04
All.XU.Instruction.Completions.Knot1 2.553e+07 4.415e+06 6.219e+06 -2.694e+05 1.528e+06 -2.606e+06
All.XU.Instruction.Completions.Knot2 9.544e+06 1.917e+06 5.191e+06 1.077e+06 2.139e+06 3.924e+04
All.AXU.Instruction.Completions.Knot1 2.071e+07 -1.007e+06 -7.069e+05 2.276e+06 1.056e+06 -1.516e+05
All.AXU.Instruction.Completions.Knot2 4.760e+06 -2.659e+06 -1.129e+05 1.392e+06 -8.800e+05 4.090e+05
FP.Operations.Knot1 -3.290e+07 -2.574e+06 3.396e+05 -3.271e+06 -1.234e+06 1.728e+05
FP.Operations.Knot2 -9.968e+06 1.732e+06 -3.832e+05 -1.484e+06 1.861e+06 -5.913e+05
Dep.Stalls.Knot1 2.103e+07 8.889e+06 1.217e+06 1.860e+05 -8.539e+06 -1.243e+06
Dep.Stalls.Knot2 1.410e+06 1.855e+06 1.087e+05 -4.715e+05 -4.260e+06 -9.074e+05
DS.THREAD.SYNC.Knot1 -3.410e+05 -1.505e+06 -1.991e+04 1.866e+07 2.161e+07 3.564e+07
DS.THREAD.SYNC.Knot2 -4.154e+06 -4.045e+04 -1.991e+04 3.045e+06 8.077e+06 6.303e+06
DS.COMM.Knot1 4.065e+06 4.272e+06 -1.181e+07 1.490e+07 1.275e+07 6.972e+05
DS.COMM.Knot2 -9.955e+05 -9.929e+05 -2.824e+06 1.869e+06 5.571e+06 5.553e+05
DS.THREAD.SYNC.COMM.Knot1 -1.583e+07 -6.059e+06 -1.444e+06 3.038e+05 1.303e+07 2.104e+06
FP.Grp1.Knot1 1.076e+09 -6.863e+08 -1.284e+08 -2.937e+07 3.976e+05 -3.207e+05
FP.Grp1.Knot2 5.540e+05 -6.341e+05 -4.787e+04 1.551e+05 -3.732e+05 3.974e+05
FP.THREAD.SYNC.Knot1 -3.401e+06 8.260e+03 -7.692e+04 3.769e+05
FP.THREAD.SYNC.Knot2 -9.226e+05 2.173e+04
FP.COMM.Knot1 1.424e+06 2.412e+05 1.119e+05 -1.561e+05
FP.COMM.Knot2 1.098e+06 2.125e+05 1.545e+05 -3.912e+04
FP.THREAD.SYNC.COMM.Knot1 6.892e+08 1.284e+08 2.992e+07 2.954e+05
INST.XU.ALL.Knot1 -2.842e+07 -3.092e+07 -2.010e+07 -1.794e+07 -8.337e+06 -7.663e+06
INST.XU.ALL.Knot2 -5.499e+06 -1.020e+07 -5.722e+06 -6.596e+06 -3.713e+06 -1.453e+06
XU.THREAD.SYNC.Knot1 4.533e+06 1.106e+07 1.317e+07 1.487e+07 5.186e+06 1.063e+07
XU.THREAD.SYNC.Knot2 -2.718e+05 4.159e+06 3.464e+06 3.177e+06 1.561e+06 1.749e+06
XU.COMM.Knot1 1.669e+07 1.569e+07 4.091e+07 1.590e+06 1.461e+06 1.029e+06
XU.COMM.Knot2 7.110e+06 6.791e+06 7.807e+06 2.556e+06 1.381e+06 2.895e+05
XU.THREAD.SYNC.COMM.Knot1 2.541e+06 1.029e+07 2.962e+06 3.785e+06 1.260e+06 5.658e+05
L1D.Misses.Knot1 5.177e+06 -6.338e+05 4.655e+06 1.249e+06 -1.441e+05 4.873e+03
L1D.Misses.Knot2 6.158e+05 1.118e+06 9.111e+05 1.597e+06 6.306e+05 2.695e+05
L1D.THREAD.SYNC.Knot1 -1.595e+06 1.360e+05 -2.207e+05 -2.460e+05 -2.032e+05 3.176e+04
L1D.THREAD.SYNC.Knot2 5.757e+05 -9.706e+04 5.159e+04 -1.456e+05 -5.118e+04 2.145e+04
L1D.COMM.Knot1 -5.169e+06 5.484e+05 -5.352e+05 -2.768e+05 -2.910e+05 4.502e+04
L1D.COMM.Knot2 -2.346e+06 1.840e+04 -2.872e+05 -2.807e+05 -1.122e+05 4.635e+04
L1D.THREAD.SYNC.COMM.Knot1 -4.546e+06 1.709e+05 -1.914e+05 -1.326e+06 -3.201e+05 8.460e+04
L1P.Misses.Knot1 6.237e+06 3.011e+04 1.390e+06 2.569e+05 1.555e+06 1.563e+05
L1P.Misses.Knot2 3.338e+06 1.200e+06 1.338e+06 7.449e+04 1.221e+06 7.791e+04
L1P.THREAD.SYNC.Knot1 2.484e+05 3.196e+05 -1.706e+05 -1.234e+05 -3.503e+05 -1.385e+04
L1P.THREAD.SYNC.Knot2 5.989e+05 -9.041e+05 -1.051e+05 -1.160e+05 -2.703e+05 -3.582e+04
L1P.COMM.Knot1 -2.189e+06 1.092e+06 2.682e+05 -2.774e+05 -6.043e+05 -1.800e+05
L1P.COMM.Knot2 -4.523e+04 1.258e+06 -5.249e+05 -6.066e+04 -4.107e+05 -8.129e+04
L1P.THREAD.SYNC.COMM.Knot1 -7.269e+06 1.476e+06 -1.403e+06 -6.641e+04 -7.491e+05 -1.931e+05
R2 0.98 0.94 0.94 0.97 0.91 0.98
Adj. R2 0.95 0.90 0.93 0.97 0.90 0.98
MSE 3.23E+12 9.11346E+11 3.33689E+11 56889909990 1.40E+11 1.00E+10
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Cubic Spline Models for layouts 4 × 4, 4 × 8, 8 × 8, 8 × 16, 16 × 8, 16 × 16. The variables are of the
form <variable>.knot1 and <variable>.knot2 which correspond to the breakpoints (mean) that define the
spline. Note that not all the variables appear in the cubic spline models. In general, if the coefficient of an
attribute is not displayed, it does not occur in the model.

13

4 Appendix

4.0.4 Effect of size of train-test data set on linear model performance:

In order to test how the R2 and Mean Square Error of the linear regression models are affected by the size
of the train-test data set, we performed a set of experiments by developing linear regression models for the
following configurations 4X4, 4X8, 8X8, 8X16, 16X8, 16X16 using a reduced set of attributes. Table 7 lists
the attributes used in these models. The examples in the dataset are split into train-test pairs by randomly
sampling x% percentage for training. Three different percentages of x were used – 50, 70, and 90. The
generation of the train-test pairs was repeated five times to study sensitivity of the regression coefficients
to sampling and effects on generalization performance. The results from these experiments are reported in
Table 8. In general, it was noted that there was not much variation if 50%, 70% or 90% of the data was
used for training models. Following this, the experiments with a larger set of attributes were performed by
randomly assigning 70% of the data as training and the rest as a test set.

1 Committed Load Misses
2 Committed Cacheable Loads
3 L1p Miss
4 All XU Instruction Completions
5 All AXU Instruction Completions
6 FP Operations

Response Cycles

Table 7: Predictor and Response Variables used in preliminary linear and non-linear machine learning models.

14

50—50 70—30 90—10
Confgn. Trial No. R2 MSE R2 MSE R2 MSE
4X4 1 0.43 7.01E-06 0.51 2.04E-06 0.49 3.53E-06

2 0.49 9.48E-06 0.47 8.55E-06 0.50 1.77E-05
3 0.51 9.58E-06 0.51 2.04E-06 0.49 2.38E-05
4 0.49 9.76E-06 0.52 5.29E-06 0.50 5.34E-06
5 0.51 1.21E-05 0.51 6.91E-07 0.50 6.68E-06

4X8 1 0.49 4.43E-06 0.49 5.21-05 0.50 8.77E-05
2 0.50 5.78E-06 0.5 4.45E-05 0.50 9.75E-05
3 0.49 3.74E-06 0.50 4.16E-05 0.50 1.03E-04
4 0.49 2.14E-06 0.50 5.24E-05 0.50 1.12E-04
5 0.49 1.08E-05 0.50 5.75E-05 0.50 1.08E-04

8X8 1 0.50 6.88E-06 0.50 2.48-06 0.49 6.47E-05
2 0.49 7.67E-06 0.50 2.37E-06 0.5 6.585E-05
3 0.49 6.65E-06 0.50 3.71E-06 0.50 5.83E-05
4 0.50 7.35E-06 0.50 3.37E-06 0.5 7.00E-05
5 0.49 6.28E-06 0.49 1.71E-06 0.50 7.23E-05

8X16 1 0.5 2.28E-05 0.49 5.34-05 0.49 6.30E-05
2 0.49 2.24E-05 0.49 5.31E-05 0.50 6.29E-05
3 0.49 2.18E-05 0.50 5.24E-05 0.50 6.28E-05
4 0.50 2.01E-05 0.50 5.21E-05 0.49 6.08E-05
5 0.50 2.20E-05 0.50 5.11E-05 0.5 6.35E-05

16X8 1 0.5 7.23E-06 0.5 6.65E-05 0.50 9.41E-05
2 0.50 7.13E-06 0.5 6.60E-05 0.49 9.09E-05
3 0.50 7.00E-06 0.49 6.78E-05 0.49 9.26E-05
4 0.50 7.23E-06 0.50 6.97E-05 0.50 3.60E-05
5 0.49 6.65E-06 0.50 6.92E-05 0.5 9.19E-05

16X16 1 0.49 9.54E-07 0.5 1.32-04 0.5 1.67E-04
2 0.50 9.03E-07 0.5 1.29E-04 0.5 1.66E-04
3 0.50 8.87E-07 0.5 1.32E-04 0.5 1.66E-04
4 0.49 1.10E-06 0.5 1.31E-04 0.5 1.64E-04
5 0.5 9.98E-07 0.5 1.35E-04 0.5 1.64E-04

Table 8: Experiments to study the sensitivity of R2 and MSE values from linear regression models for
different sizes of train-test data.

15

	Understanding the Scaling Behavior of the GFDL FMS High-Resolution Atmosphere Model on the Argonne BG/Q Platform
	IBM BG/Q: A Platform for Performance Discovery
	1 Executive Summary
	2 Introduction
	2.1 Background
	2.2 Project History

	3 Broad Goals
	3.1 Background
	3.2 Methodology

	4 Findings
	4.1 Scaling Results
	4.2 Initial Analysis
	4.3 Detailed Results
	4.3.1 The New Test Configuration
	4.3.2 Understanding Performance Through Globally Summed Hardware Counts
	4.3.3 OpenMP Overheads
	4.3.4 Performance Drivers
	4.3.5 Conclusion

	4.4 Machine Learning

	5 Summary
	6 Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	Appendix D

